

Department of Chemistry, B. N. College Bhagalpur http://bncollegebgp.ac.in/

Non-aqueous Solvents

- Introduction
- Classification
- Physical properties
- Chemical reactions
- Liquid ammonia as a solvent
- Solubilities of substances in liq. NH₃

Non Aqueous Solvents

What is solvent

A substance which has the power of dissolving other substances.

Water

Water is an Example of Universal solvent/Most Useful Solvent due to: -

- Its high dielectric constant (80.10 at 20°C)
- Long liquid range (0-100°C)
- Liquid at ordinary temp.
- Availability
- Easily purified

Non Aqueous Solvents

- Non aqueous solvent is a solvent other than water.
- Non-aqueous solvents are water-free fluids that dissolve certain salts in the same way as water.

Non Aqueous Solvents

Common examples are:

- Liquid ammonia(NH₃)
- Liquid sulphur dioxide (SO₂)
- Hydrogen fluoride(HF)
- Dinitrogen tetroxide(N₂O₄)
- Phosphorus oxy-chloride(POCl₃)

- Protic and aprotic solvents
- lonizing and non-ionizing solvents

- Acidic Solvents, Basic Solvents and
 - **Amphiprotic Solvents**

Protic solvents

Protic or Protonic which have hydrogen as their constituent

Example: Liq. NH₃, HF, HCN, H₂SO₄, CH₃COOH etc.

Aprotic solvents

Aprotic solvents do not have hydrogen in the molecule

lonizing solvents

- Polar
- Dissolve ionic compounds
- lonic reactions occurs in these solvents
- Undergoes self-ionization
- Have high value of Dielectric constant

Example: NH₃, SO₂, N₂O₄, POCl₃, HF, H₂SO₄

Non-lonizing solvents

- Non-polar
- Dissolves non-polar or neutral compounds
- No ionic reaction occurs in these solvents
- Do not undergo self-ionization
- Have low value of Dielectric constant

Example: Benzene, Carbon tetrachloride

Acidic Solvents

- Acidic solvents have strong tendency to give protons
- e.g.- Liquid HF, H₂SO₄, CH₃COOH

Basic Solvents

- Solvents which have strong affinity for protons are called Basic Solvents
- e.g.- Liq. NH₃, Pyridine, Hydrazine

Amphiprotic Solvents

These have hydrogen in their formula and can act as both acid or base

Auto-ionization (solvent system) theory of solvent

Based on the mode of self-ionization of the solvent

Solvent = acidic part + basic part

- On auto-ionization it splits into these two parts
- Substance that increases the concentration of acidic part behaves as an acid.
- Substance that increases the concentration of basic part behaves as a base.

Physical properties of solvents

- Dielectric constant: F=q⁺q⁻/Dr²
- Viscosity: High viscosity means precipitation, crystallization, filtration cannot take place, reduces the usefulness of a solvent.
 - Melting point and boiling point
 - Heat of fusion and vaporization gives an idea about intermolecular forces: high values means stronger intermolecular binding forces

Chemical reaction

- Acid base reaction
- Precipitation reaction
- Salt formation
- Redox reaction
- Solvation reaction

Liq. NH₃as a solvent

Liquid Ammonia

- Liquid ammonia is one of the most extensively used non aqueous solvents.
- It is a protonic solvent and its water like properties have made it a highly useful solvent and a reaction medium for carrying out various types of organic and inorganic reactions.

- Has lower dielectric value than water: liq. NH₃ is poor electrolytic solvent than water.
- Low viscosity: promotes greater ionic mobilities.
- M.P. and B.P. of ammonia are abnormal due to intermolecular association as a result of Hbonding. Its freezing and B.P. are lower than those of water, it requires precaution while working with it.

- Nitrates, nitrites, thiocyanates and cyanides are soluble in liq. NH₃.
- Fluorides, oxides, hydroxides, sulphates, carbonates, phosphates, sulphites and sulphides are insoluble in liq. NH₃.
- ➤ It forms many solvates due to its ability of donation of lone pair of electrons and formation of coordinate bond and ion-dipole linkage.

- Solubilities of covalent organic compounds in liq. ammonia are considerably higher than in water due to greater dispersion energy interactions.
- Specific heat of ammonia is higher than that of water.
- It posses unusual high thermal coefficient of expansion, i.e, its density decreases with rise in temperature.

It is an ionizing solvent.

$$NH_3 + NH_3 \longrightarrow NH_4^+ + NH_2^-$$
acid base

$$K_{NH3} = [NH_4^+][NH_2^-] = 1x10^{-33} \text{ at } 223K$$

 $K_{H2O} = [H^+][OH^-] = 1x10^{-14} \text{ at } 291K$

lonization of ammonia is very small, as can be seen from its low conductance and ionic product.

Acid-Base reactions: Acids: Produces NH4+

Base: Produces NH₂

➤ Acid-Base neutralization occurs in liq. ammonia as in water. The reaction can be followed by conductometric titration or through indicators, eg. Phenolphthalein: colourless in liq. Ammonia & intense red in alkali amides.

Redox reactions: Similar to the reactions in water

Solutions of alkali and alkaline earth metals acts as electrons donors.

$$2Na + 2NH_4Br = \frac{liq. NH_3}{2NaBr} + 2NH_3 + H_2$$

Nitrous oxide oxidizes metallic potassium in liq. ammonia to K⁺ and itself reduces to N₂.

$$N_2O + 2K + NH_3(I)$$
 \Longrightarrow $KHN_2 + KOH + N_2$

Precipitation or metathesis reactions

- Due to difference in solubilities of water and liq. ammonia, a number of reactions which do not occur in water has been carried out in liq. ammonia.
- Lithium chloride may be precipitated by the reaction of ammonium chloride and lithium nitrate in liq. ammonia.

NH₄Cl+LiNO₃ Hiq. NH₃ NH₄NO₃+LiCl \

Solutions of potassium iodide and ammonium chloride in liq. ammonia produces a white ppt. of KCI.

$$KI + NH_4Cl \xrightarrow{liq. NH_3} KCl_{\dagger} + NH_4I$$

Ammonium sulphides in liq. NH₃ is capable of precipitating many metal sulphides from the nitrate solutions of the metals.

$$Ba(NO_3)_2 + (NH_4)_2S \xrightarrow{liq. NH_3} \rightarrow BaS \downarrow + 2NH_4NO_3$$

$$(NH_4)_2S + 2AgNO_3 \rightarrow Ag_2S \downarrow + 2NH_4NO_3$$

$$(NH_4)_2S + Cu(NO_3)_2 \rightarrow CuS \downarrow + 2NH_4NO_3$$

$$Dept. of Chem. BNC. Dr. Ambika Kr. 30 April 2020$$

lodides and bromides get precipitated when solutions of various nitrates and ammonium halides are mixed together.

$$Sr(NO_3)_2 + 2NH_4Br \rightarrow SrBr_2 + 2NH_4NO_3$$

$$Zn(NO_3)_2 + 2NH_4I \rightarrow ZnI_2 + 2NH_4NO_3$$

Complex formation reaction

Several complex formation reactions in liq. Ammonia are known which are similar to the reactions occurring in aqueous medium.

Solvolysis/Ammonolysis reactions

- ➤ These reactions are analogous to hydrolysis reactions in water.
- Alkali and alkaline earth metal hydrides are ammonolysed to metal amide and hydrogen.

M+H- + NH3(1) -> M+NH2- + H2

The solution contains solvated metal cation and solvated electron (imparts blue colour)

$$M \iff M^+ + e^-$$

$$M^+ + x \cdot NH_3 \implies M(NH_3)_x^+ + e^-$$

$$e^- + y \cdot NH_3 \implies e(NH_3)_y^-$$

On evaporation of the solvent the electron returns to the parent ions

Solubilities of Substances in Liq NH₃

- ▶ Liq. NH₃ is very poor solvent for lonic substances.
- Amongst the organic compounds, nitrates, thiocyanates, perchlorate and most of the Cyanides are soluble in it.
- Oxides, hydroxides, carbonates, phosphates, sulphates and most of the sulphides are insoluble in it.

Solubilities of Substances in Liq NH₃

- Halogen compounds, alcohols, ketones, esters, ethers, phenol and its derivatives are soluble
- Aromatic hydrocarbons are sparingly soluble
- Alkanes are insoluble
- Elements like Mg, Al, Zn, Ca, La, Ce, Mn have low solubility's in liq.NH₃

Advantages of liq. Ammonia as Solvent

Ammonium salts dissolved in liq.NH₃ find valid application in Preparative chemistry

➤ The tendency for solvolysis is less in liq.NH₃ than in water

Disadvantages of liq. NH₃ as solvent

- ➤ Low temperature or high pressure is necessary while working with liq. Ammonia. This is because of its liquid range -33° C to -77° C
- It is hygroscopic in nature, hence all the reactions are to be carried out in sealed tubes
- The use of liq. NH₃ as a solvent and as a reaction medium requires special technique because it has an offensive odour

Liq. SO₂ as a solvent

Introduction

Physical Properties of liq. SO₂

- Solubilities of substances in liq. SO₂
- Chemical reactions of liq. SO₂

Liquid Sulphur dioxide (SO₂)

Characteristics of liq. SO₂

Non protic solvent

compounds

- At R.T. SO₂ is a gas but it can be readily liquefied
- Has a wide liquid range (-10 °C to -75 °C)
- Low cost and easy to handle
- Low dielectric constant (17.4 at -10°C)
- Therefore is a good solvent for covalent compounds but a poor solvent for ionic

Physical properties of Liq. SO₂

S.N.	Properties	Values
1	Freezing Point	196.5 K
2	Boiling Point	2.63 K
3	Density	1.46 gml ⁻¹ (-10 °C)
4	Dielectric Constant	17.4 at -10°C
5	Dipole moment	1.61Debye (-10 °C)
6	Viscosity	0.428 Centipoise
7	Specific Conductance	4 X 10 ⁻⁸ Ohm ⁻¹ Cm ⁻¹ (-10 °C)

Structure of SO₂

Bond angle = 119.5° Bond length = 1.43 Å

Auto - ionization

$$SO_2 + SO_2 \rightarrow SO^{2+} + SO_3^{2-}$$

By Analogy with water and liq. NH₃, self ionization of SO₂ takes place.

Solubility of Substances in Liq. SO₂

Amongst the Inorganic Compounds

- lodides and thiocyanates are the most soluble
- Metal sulphates, sulphides, oxides, hydroxides are insoluble
- Many of the ammonium, thallium and mercury salts are soluble

Solubility of Substances in Liq. SO₂

Amongst the Organic Compounds

- Excellent solvent for covalent compounds
- Metals are insoluble in Liq. SO₂
- Aromatic hydrocarbon and alkenes are more soluble than aliphatic hydrocarbons.
- Pyridine, quinoline, ethers, halogen derivatives and acid chlorides are also soluble
- > Alkanes are insoluble

Conductivity of salt solutions in SO₂

Conductivity of electrolyte solutions in liq. SO₂ increases with the size of cation and has the following order:

$$Na^{+} < NH_{4}^{+} < K^{+} < (CH_{3})_{3}S^{+} < (CH_{3})_{4}N^{+}$$

Conductivity of anions has the following order:

1. Acid - Base Reactions

Neutralization reactions

Acid + Base → Salt + Solvent

$$SOBr_2 + [N(CH_3)_4]_2SO_3 \rightarrow 2[N(CH_3)_4]Br + 2SO_2$$

$$SO(SCN)_2 + K_2SO_3 \rightarrow 2K(SCN) + 2SO_2$$

Compounds of Zn(II) and Al(III) shows amphoteric behavior in liq.SO₂

Acidic character

$$2AICI_3 + 3K_2SO_3 \rightarrow 6KCI + AI_2(SO_3)_2$$

Basic Character

$$ZnSO_3 + K_2SO_3 \rightarrow K_2[Zn(SO_3)_2]$$

$$AI_2(SO_3)_2 + 3K_2SO_3 \rightarrow 2K_3[AI(SO_3)_3]$$

- 2. Solvolytic Reactions/Solvolysis
- Only a limited number of salts undergoes solvolysis in liq. SO₂
- Ammonium acetate is solvolysed in liq. SO₂ as follows:

$$2CH_{3}COONH_{4} + 2SO_{2} \rightarrow (NH_{4})_{2}SO_{3} + (CH_{3}COO)_{2}SO$$

$$(CH_{3}COO)_{2}SO \rightarrow SO_{2} + (CH_{3}CO)_{2}O$$

Some covalent halides also undergoes solvolysis in liq. SO₂

$$PCl_5 + SO_2 \rightarrow POCl_3 + SOCl_2$$

 $AsCl_5 + SO_2 \rightarrow AsOCl_3 + SOCl_2$
 $UCl_6 + 2SO_2 \rightarrow UO_2Cl_2 + 2SOCl_2$
 $WCl_6 + SO_2 \rightarrow WOCl_4 + SOCl_2$

3. Solvation

The formation of solvates (addition compounds with the solvent) takes place as follows

NaI +
$$4SO_2(I) \rightarrow NaI.4SO_2$$

KI + $4SO_2(I) \rightarrow KI.4SO_2$

4. Precipitation Reactions

Precipitation of a compound depends upon its solubility. A large number of precipitation reactions can be carried out in liq. SO₂ due to specific solubility relationship

$$Bal_2 + Zn(CNS)_2 \rightarrow Ba(CNS)_2 \downarrow + Znl_2$$

 $PbF_2 + Li_2SO_4 \rightarrow PbSO_4 \downarrow + 2LiF$
 $SbCl_3 + 3LiI \rightarrow Sbl_3 \downarrow + 3LiCI$

Thionyl chloride in liq. SO₂ is used to prepare many compounds

2CH₃COOAg + SOCl₂ → 2AgCl ↓ + SO(CH₃COO)₂(Thionyl Acetate)

$$2NH_4(SCN) + SOCI_2 \rightarrow 2NH_4CI \downarrow + SO(SCN)_2$$

5. Complex Formation Reactions

- SO₂ does not itself takes part in complexation but it serves as a medium for complex formation.
- The solubility of iodine in liq. SO₂ is greatly increased by the addition of potassium and rubedium. This is due to the formation of the complex KI₃ or RbI₃

$$KI + I_2 \rightarrow KI_3$$
 $RbI + I_2 \rightarrow RbI_3$
 $Dept. of Chem_BNC_Dr. Ambika Kr.$

- When Hgl₂ or Cdl₂ is dissolved in liq.SO₂ in presence of KI, the solubility of these iodides is increased due to the formation of a soluble complex K₂[MI₄]
- When solutions of salt like AlCl₃, ZnCl₂ in liq. SO₂ react with the excess of a compound containing SO₃²⁻ ions, soluble sulphito complexes are formed

$$2 \text{ AICl}_3 + 6 \text{K}_2 \text{SO}_3 \rightarrow 2 \text{K}_3 [\text{AI}(\text{SO}_3)_3] + 6 \text{KCI}$$

 $2 \text{nCl}_2 + 2 \text{K}_2 \text{SO}_3 \rightarrow \text{K}_2 [\text{Zn}(\text{SO}_3)_2] + 2 \text{KCI}$

Hexahalo complexes in liq. SO₂ are formed by the action of covalent halides (SbCl₃, SbCl₅) on alkali metal halides (KCl, NOCl, [N(CH₃)₄]Cl)

6. Redox Reactions

- Gaseous SO₂ is known to behave as both oxidising and reducing agent.
- Liq. SO₂ does not have any strong oxidising or reducing properties. But it serves only as a medium for redox reactions.
- Liq. SO₂ can not reduce iodine, however, a sulphite in liq. SO₂ reduces iodine to iodide.

$$I_2 + 2R_2SO_3 \rightarrow R_2SO_4 + 2RI + SO_2$$

KI is oxidised to free iodine by FeCl₃ or SbCl₅ in liq. SO₂

- 7 Organic reactions in liq. SO₂
- SO₂ serves as one of the best medium for the reactions where inert and non-inflammable solvent is required.
- ✓ Sulphonation: In liq. SO₂ medium good yield is obtained

✓ Bromination: Liq. SO₂ is used for both addition and substitution reactions with Br

✓ Friedel-Crafts reaction: AlCl₃ is highly soluble in liq. SO₂ and therefore preferred over ether which is highly inflammable

Uses of liq. SO₂

- It is a solvent of intermediate dielectric constant: certain compound are soluble and some insoluble.
- Useful solvent for several types of synthetic reactions and in refining of certain types of petroleum products.

Suggestion: For more detail and explanation, visit following link provided by SWAYAM PRABHA elearning platform

https://www.youtube.com/watch?v=9HTxnTCxc7c