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Kinetics

• Studies the rate at which a chemical process
occurs.

• Besides information about the speed at which
reactions occur, kinetics also sheds light on
the reaction mechanism (exactly how the
reaction occurs).
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Outline: Kinetics

Reaction Rates How we measure rates.

Rate Laws
How the rate depends on amounts 

of reactants.

Integrated Rate Laws
How to calculate  the amount left 

or time to reach a given amount.

Half-life
How long it takes to react 50% of 

initial concentration reactants.

Arrhenius Equation
How rate constant changes with 

Temperature.

Mechanisms
Link between rate and molecular 

scale processes.
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Factors That Affect Reaction Rates
• Concentration of Reactants

– As the concentration of reactants increases, so does the
likelihood that reactant molecules will collide more
frequently.

• Temperature

– At higher temperatures, reactant molecules have more
kinetic energy, move faster, and collide more often and
with greater energy.

• Catalysts

– Enhances the speed by changing mechanism.
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Reaction Rates

Rates of reactions can be determined by monitoring the
change in concentration of either reactants or products
as a function of time.

6



Reaction Rates 

In this reaction, the
concentration of butyl
chloride, C4H9Cl, was
measured at various
times, t.

C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq) 

[C4H9Cl] M
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Reaction Rates 

The average rate of the
reaction over each
interval is the change in
concentration divided
by the change in time:

C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq) 

Average Rate, M/s
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Reaction Rates 

• Note that the average rate
decreases as the reaction
proceeds.

• This is because as the
reaction goes forward,
there are fewer collisions
between reactant
molecules.

C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq) 
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Reaction Rates 

• A plot of concentration vs.
time for this reaction
yields a curve like this.

• The slope of a line tangent
to the curve at any point
is the instantaneous rate
at that time.

C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq) 
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Reaction Rates 

• The reaction slows down 
with time because the 
concentration of the 
reactants decreases.

C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq) 
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Reaction Rates and Stoichiometry 

• In this reaction, the ratio 
of C4H9Cl to C4H9OH is 1:1.

• Thus, the rate of 
disappearance of C4H9Cl is 
the same as the rate of 
appearance of C4H9OH.

C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq) 

Rate    =
-[C4H9Cl]

t
=

[C4H9OH]
t
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Reaction Rates and Stoichiometry

• What if the ratio is not 1:1?

H2(g) + I2(g)       2 HI(g) 

• Only 1/2 HI is made for each H2 used.
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Reaction Rates and Stoichiometry

• To generalize, for the reaction

aA + bB cC + dD

Reactants (decrease) Products (increase)
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Concentration and Rate

“Each reaction has its own equation that gives
its rate as a function of reactant
concentrations”.-

this is called its Rate Law

To determine the rate law we measure the rate at
different starting concentrations.
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Concentration and Rate

Compare Experiments 1 and 2:
when [NH4

+] doubles, the initial rate doubles.
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Concentration and Rate

Likewise, compare Experiments 5 and 6: 
when [NO2

-] doubles, the initial rate doubles.
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Concentration and Rate

This equation is called the rate law, and 
k is the rate constant.
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Rate Laws

• A rate law shows the relationship between the reaction rate and 
the concentrations of reactants.

– For gas-phase reactants use PA instead of [A].

• k is a constant that has a specific value for each reaction.

• The value of k is determined experimentally.
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Rate Laws
• Exponents tell the order of the reaction with 

respect to each reactant.

• This reaction is

First-order in [NH4
+]

First-order in [NO2
−]

• The overall reaction order can be found by adding 
the exponents on the reactants in the rate law.

• This reaction is second-order overall.
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Integrated Rate Laws
Consider a simple 1st order rxn: A B

How much A is left after time t?  Integrate:

Differential form:
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Integrated Rate Laws

The integrated form of first order rate law:

Can be rearranged to give:

[A]0 is the initial concentration of A (t = 0).
[A]t is the concentration of A at some time, t,
during the course of the reaction.
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Integrated Rate Laws

Manipulating this equation produces… 

…which is in the form y = mx +  b
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First-Order Processes

If a reaction is first-order, a plot of ln [A]t vs. 
t will yield a straight line with a slope of -k.

So, use graphs to determine rxn order.
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First-Order Processes

Consider the process in 
which methyl isonitrile is 
converted to acetonitrile.

CH3NC CH3CN

How do we know this is 
a first order rxn?
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First-Order Processes

This data was 
collected for this 
reaction at 198.9°C.

CH3NC CH3CN

Does 
rate=k[CH3NC] 
for all time intervals?
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First-Order Processes

• When lnP is plotted as a function of time, a 
straight line results.

– The process is first-order.

– k is the negative slope:  5.1  10-5 s-1.
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Second-Order Processes

Similarly, integrating the rate law for a process 
that is second-order in reactant A:

also in the form y =  mx + b

Rearrange, integrate:

28



Second-Order Processes

So if a process is second-order in A, a plot 
of 1/[A] vs. t will yield a straight line with a 
slope of k.

If a reaction is first-order, a plot of ln [A]t vs. t will
yield a straight line with a slope of -k.

First order:
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Determining rxn order
The decomposition of NO2 at 300°C is described by the 
equation

NO2 (g) NO (g) + 1/2 O2 (g)

and yields these data:

Time (s) [NO2], M

0.0 0.01000

50.0 0.00787

100.0 0.00649

200.0 0.00481

300.0 0.00380
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Graphing ln [NO2] vs. t yields:

Time (s) [NO2], M ln [NO2]

0.0 0.01000 -4.610

50.0 0.00787 -4.845

100.0 0.00649 -5.038

200.0 0.00481 -5.337

300.0 0.00380 -5.573

• The plot is not a straight line, 
so the process is not first-
order in [A].

Determining rxn order

Does not fit:
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Second-Order Processes
A graph of 1/[NO2] vs. t gives 

this plot.

Time (s) [NO2], M 1/[NO2]

0.0 0.01000 100

50.0 0.00787 127

100.0 0.00649 154

200.0 0.00481 208

300.0 0.00380 263

• This is a straight 
line. Therefore, the 
process is second-
order in [NO2].
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Half-Life

• Half-life is defined as 
the time required for 
one-half of a reactant 
to react.

• Because [A] at t1/2 is 
one-half of the 
original [A], 

[A]t = 0.5 [A]0.
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Half-Life
For a first-order process, set [A]t=0.5 [A]0 in 

integrated rate equation:

NOTE:  For a first-order process, the 
half-life does not depend on [A]0.
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Half-Life- 2nd order
For a second-order process, set 
[A]t = 0.5 [A]0 in 2nd order equation.
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Outline: Kinetics

First order
Second order (same 

reactant)

Second order 

(different reactant)

Rate 

Laws

Integrate

d Rate 

Laws
complicated

Half-life complicated
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Temperature and Rate

• Generally, as temperature
increases, reaction rate a;so
increases.

• This is because k is
temperature dependent.
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The Collision Model

• In a chemical reaction, bonds are broken and 
new bonds are formed.

• Molecules can only react if they collide with 
each other with appropriate energy and 
orientation as well.
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The Collision Model

Furthermore, molecules must collide with the 
correct orientation and with enough energy to 
cause bond breakage and formation.
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A + ABC A--A--BC  A2 +     BC
Reactant Transition State     Product        



Activation Energy

• In other words, there is a minimum amount of energy
required for reaction: the activation energy, Ea.

• Just as a ball cannot get over a hill if it does not roll up the
hill with enough energy, a reaction cannot occur unless
the molecules possess sufficient energy to get over the
activation energy barrier.
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Reaction Coordinate Diagrams

It is helpful to 
visualize energy 
changes throughout 
a process on a 
reaction coordinate 
diagram like this one 
for the 
rearrangement of 
methyl isonitrile.

41



Reaction Coordinate Diagrams

• It shows the energy of the 
reactants and products 
(and, therefore, E).

• The high point on the 
diagram is the transition 
state.

• The species present at the transition state is called 
the activated complex.

• The energy gap between the reactants and the 
activated complex is the activation energy barrier.
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Maxwell–Boltzmann Distributions

• Temperature is 
defined as a 
measure of the 
average kinetic 
energy of the 
molecules in a 
sample.

• At any temperature there is a wide distribution 
of kinetic energies.
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Maxwell–Boltzmann Distributions

• As the temperature 
increases, the curve 
flattens and 
broadens.

• Thus at higher 
temperatures, a 
larger population of 
molecules has higher 
energy.
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Maxwell–Boltzmann Distributions

• If the dotted line represents the activation energy, 
as the temperature increases, so does the fraction 
of molecules that can overcome the activation 
energy barrier.

• As a result, the 
reaction rate 
increases.
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Maxwell–Boltzmann Distributions

This fraction of molecules can be found through the expression:

where R is the gas constant and T is the temperature in Kelvin .
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Arrhenius Equation

Svante Arrhenius developed a mathematical 
relationship between k and Ea:

where A is the frequency factor, a number that 
represents the likelihood that collisions would 
occur with the proper orientation for reaction.
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Arrhenius Equation

Taking the natural 
logarithm of both 
sides, the equation 
becomes

1
RT

y =   mx + b

When k is determined experimentally at several 
temperatures, Ea can be calculated from the slope 
of a plot of ln k vs. 1/T.
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Outline: Kinetics

First order Second order Second order

Rate 

Laws

Integrate

d Rate 

Laws
complicated

Half-life complicated

k(T)
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Reaction Mechanisms
The sequence of events that describes the 
actual process by which reactants become 
products is called the reaction mechanism.

• Reactions may occur all at once or through 
several discrete steps.

• Each of these processes is known as an 
elementary reaction or elementary process.
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Reaction Mechanisms

• The molecularity of a process tells how many
molecules are involved in the process.

• The rate law for an elementary step is written
directly from that step.
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Multistep Mechanisms

• In a multistep process, one of the steps will be 
slower than all others.

• The overall reaction cannot occur faster than this 
slowest, rate-determining step.
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Slow Initial Step

• The rate law for this reaction is found experimentally to 
be

Rate = k [NO2]2

• CO is necessary for this reaction to occur, but the rate
of the reaction does not depend on its concentration.

• This suggests the reaction occurs in two steps.

NO2 (g) + CO (g) NO (g) + CO2 (g)
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Slow Initial Step

• A proposed mechanism for this reaction is

Step 1:  NO2 + NO2 NO3 + NO   (slow)

Step 2:  NO3 + CO                    NO2 + CO2 (fast)

• The NO3 intermediate is consumed in the second step.

• As CO is not involved in the slow, rate-determining step, it does not 

appear in the rate law.
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Fast Initial Step

• The rate law for this reaction is found 
(experimentally) to be

• Because termolecular (= trimolecular) 
processes are rare, this rate law suggests a 
two-step mechanism.
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Fast Initial Step

• A proposed mechanism is

Step 1 is an equilibrium-
it includes the forward and reverse reactions.
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Fast Initial Step

• The rate of the overall reaction depends 
upon the rate of the slow step.

• The rate law for that step would be

• But how can we find [NOBr2]?
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Fast Initial Step

• NOBr2 can react two ways:

– With NO to form NOBr

– By decomposition to reform NO and Br2

• The reactants and products of the first step 
are in equilibrium with each other.

• Therefore,

Ratef = Rater
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Fast Initial Step

• Because Ratef = Rater ,

k1 [NO] [Br2] = k−1 [NOBr2]

Solving for [NOBr2] gives us

k1

k−1
[NO] [Br2] = [NOBr2]
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Fast Initial Step

Substituting this expression for [NOBr2] in 
the rate law for the rate-determining step 
gives
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Catalysts

• Catalysts increase the rate of a reaction by 
decreasing the activation energy of the reaction.

• Catalysts change the mechanism by which the 
process occurs.
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Catalysts

One way a catalyst 
can speed up a 
reaction is by 
holding the 
reactants together 
and helping bonds 
to break.

62





Enzymes

• Enzymes are catalysts 
in biological systems.

• The substrate fits into 
the active site of the 
enzyme much like a 
key fits into a lock.
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