Prepared by: Dr. Ambika Kumar Asst. Prof. in Chemistry Dept. of Chemistry B. N. College Bhagalpur Contact No. 7542811733 e-mail ID: kumarabika.1115@gmail.com

Department of Chemistry, B. N. College Bhagalpur <http://bncollegebgp.ac.in/>

Chemical **Kinetics**

An Introduction

Kinetics

• Studies the rate at which a chemical process occurs.

• Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly *how* the reaction occurs).

Outline: Kinetics

Factors That Affect Reaction Rates

- **Concentration of Reactants**
	- As the concentration of reactants increases, so does the likelihood that reactant molecules will collide more frequently.
- **Temperature**
	- At higher temperatures, reactant molecules have more kinetic energy, move faster, and collide more often and with greater energy.
- **Catalysts**
	- Enhances the speed by changing mechanism.

Rates of reactions can be determined by monitoring the change in concentration of either reactants or products as a function of time.

 $C_4H_9Cl(aq) + H_2O(l)$ \longrightarrow $C_4H_9OH(aq) + HCl(aq)$

In this reaction, the concentration of butyl chloride, **C4H9Cl**, was measured at various times, **t**.

 $C_4H_9Cl(aq) + H_2O(l)$ \longrightarrow $C_4H_9OH(aq) + HCl(aq)$

 $C_4H_9Cl(aq) + H_2O(l)$ \longrightarrow $C_4H_9OH(aq) + HCl(aq)$

- Note that the average rate decreases as the reaction proceeds.
- This is because as the reaction goes forward, there are fewer collisions between reactant molecules.

 $C_4H_9Cl(aq) + H_2O(l)$ \longrightarrow $C_4H_9OH(aq) + HCl(aq)$

- A plot of concentration vs. time for this reaction yields a curve like this.
- The slope of a line tangent to the curve at any point is the instantaneous rate at that time.

$$
\frac{\Delta[A]}{\Delta t} \Rightarrow \frac{d[A]}{dt}
$$

 $C_4H_9Cl(aq) + H_2O(l)$ \longrightarrow $C_4H_9OH(aq) + HCl(aq)$

• The reaction slows down with time because the concentration of the reactants decreases.

$$
\frac{\Delta[A]}{\Delta t} \Rightarrow \frac{d[A]}{dt}
$$

Reaction Rates and Stoichiometry

 $C_4H_9Cl(aq) + H_2O(l)$ \longrightarrow $C_4H_9OH(aq) + HCl(aq)$

- In this reaction, the ratio of C_4H_9Cl to C_4H_9OH is 1:1.
- Thus, the rate of *disappearance* of C₄H₉Cl is the same as the rate of *appearance* of C_4H_9OH .

Rate = $\frac{-\Delta [C_4H_9Cl]}{\Delta t}$

t

Reaction Rates and Stoichiometry

• What if the ratio is *not* 1:1?

 $H_2(g) + I_2$ \rightleftharpoons 2 HI(*g*)

• Only $1/2$ HI is made for each $H₂$ used.

$$
rate=-\frac{\Delta\left[H_2\right]}{\Delta t}=\frac{1}{2}\frac{\Delta\left[HI\right]}{\Delta t}
$$

Reaction Rates and Stoichiometry

• To generalize, for the reaction

 $aA + bB \longrightarrow cC + dD$ $rate = -\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$ Reactants (decrease) Products (increase)

Concentration and Rate

"Each reaction has its own equation that gives its rate as a function of reactant concentrations".-

this is called its **Rate Law**

To determine the rate law we measure the rate at different starting concentrations.

Concentration and Rate

 $NH_{4}^{+}(aq) + NO_{2}^{-} \rightarrow N_{2}(q) + 2H_{2}O(l)$

Compare Experiments 1 and 2: when $[NH_4^+]$ doubles, the initial rate doubles.

Concentration and Rate

$NH_{4}^{+}(aq) + NO_{2}^{-} \rightarrow N_{2}(q) + 2H_{2}O(l)$

Likewise, compare Experiments 5 and 6: when $\mathsf{[NO_2]}$ -] doubles, the initial rate doubles.

Concentration and Rate
\n
$$
rate \propto [NH_4^+]
$$
\n
$$
rate \propto [NO_2^-]
$$
\n
$$
rate \propto [NH_4^+] [NO_2^-]
$$
\n
$$
rate = k [NH_4^+] [NO_2^-]
$$

This equation is called the rate law, and *k* is the rate constant.

$$
NH_4^+(aq) + NO_2^- \to N_2(g) + 2H_2O(l)
$$

Rate Laws

• A rate law shows the relationship between the reaction rate and the concentrations of reactants.

 $-$ For gas-phase reactants use P_A instead of [A].

- k is a constant that has a specific value for each reaction.
- The value of k is determined experimentally.

$$
rate = k\left[NH_4^+\right]\left[NO_2^-\right]
$$

Rate Laws

- Exponents tell the order of the reaction with respect to each reactant.
- This reaction is

First-order in $\text{[NH}_{4}^+]$ *First-order* in [NO₂ −]

- The overall reaction order can be found by adding the exponents on the reactants in the rate law.
- This reaction is *second-order overall*.

$$
rate = k \left[NH_4^+ \right]^1 \left[NO_2^- \right]^1
$$

Integrated Rate Laws

Consider a simple 1st order rxn: $A \rightleftharpoons B$

$$
rate = k\left[A\right] \quad \text{Differential form: } -\frac{d\left[A\right]}{dt} = k\left[A\right]
$$

How much A is left after time *t*? Integrate:

$$
-d [A] = k [A] dt
$$

\n
$$
\frac{d [A]}{[A]} = -k dt
$$

\n
$$
\int \frac{d [A]}{[A]} = -\int k dt
$$

\n
$$
\left(\frac{d [A]}{[A]} = -\int k dt\right)
$$

Integrated Rate Laws

The integrated form of first order rate law:

$$
(A)_t = [A]_0 e^{-kt}
$$

Can be rearranged to give:

$$
ln\frac{[A]_t}{[A]_0}=-kt
$$

 $[A]_0$ is the initial concentration of A ($t = 0$). [A]*^t* is the concentration of A at some time, *t*, during the course of the reaction.

Integrated Rate Laws

Manipulating this equation produces…

$$
ln\frac{[A]_t}{[A]_0} = -kt
$$

$$
ln\left[A\right]_t - ln\left[A\right]_0 = -kt
$$

$$
ln\left[A\right]_t = -kt + ln\left[A\right]_0
$$

…which is in the form $y = mx + b$

$$
\ln\left[A\right]_t=-kt+\ln\left[A\right]_0
$$

If a reaction is first-order, a plot of $\ln [A]_t$ vs. *t* will yield a straight line with a slope of -*k*.

So, use graphs to determine rxn order.

Methyl isonitrile

Consider the process in which methyl isonitrile is converted to acetonitrile.

How do we know this is a first order rxn?

Acetonitrile

This data was collected for this reaction at 198.9°C.

Does rate=k[$CH₃NC$] for all time intervals?

- When ln*P* is plotted as a function of time, a straight line results.
	- **The process is first-order.**
	- $-$ *k* is the negative slope: 5.1×10^{-5} s⁻¹.

Second-Order Processes

Similarly, integrating the rate law for a process that is second-order in reactant A:

$$
rate = -\frac{d [A]}{dt} = k [A]^2
$$

Rearrange, integrate:
$$
\frac{1}{[A]_t} = -kt + \frac{1}{[A]_0}
$$

also in the form $y = mx + b$

Second-Order Processes

So if a process is second-order in A, a plot of 1/[A] vs. *t* will yield a straight line with a slope of k . $ln [A]_t = -kt + ln [A]_0$

First order:

If a reaction is first-order, a plot of $\ln [A]_t$ vs. *t* will yield a straight line with a slope of -*k*.

Determining rxn order

The decomposition of $NO₂$ at 300°C is described by the equation

$$
NO2(g) \longrightarrow NO(g) + 1/2 O2(g)
$$

and yields these data:

Determining rxn order

Graphing In [NO₂] vs. t yields:

• The plot is *not* a straight line, so the process is *not* firstorder in [A].

Does not fit:

$$
\ln\left[A\right]_t=-kt+\ln\left[A\right]_0
$$

Second-Order Processes

A graph of $1/[NO₂]$ vs. *t* gives this plot.

$$
\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}
$$

• This *is* a straight line. Therefore, the process is secondorder in $[NO₂]$.

Half-Life

- Half-life is defined as the time required for one-half of a reactant to react.
- Because [A] at $t_{1/2}$ is one-half of the original [A], $[A]_t = 0.5 [A]_0.$

Half-Life

For a first-order process, set $[A]_t=0.5$ $[A]_0$ in integrated rate equation:

$$
ln \frac{0.5[A]_0}{[A]_0} = -kt_{\frac{1}{2}}
$$

\n
$$
ln(0.5) = -kt_{\frac{1}{2}}
$$

\n
$$
ln(2) = 0.693 = -kt_{\frac{1}{2}}
$$

\n
$$
\frac{0.693}{k} = t_{\frac{1}{2}}
$$

NOTE: For a first-order process, the half-life does not depend on $[A]_0$.

Half-Life- 2nd order

For a second-order process, set $[A]_t = 0.5 [A]_0$ in 2nd order equation.

Outline: Kinetics

Temperature and Rate

Generally, as temperature increases, reaction rate a;so increases.

• This is because *k* is temperature dependent.

The Collision Model

• In a chemical reaction, bonds are broken and new bonds are formed.

• Molecules can only react if they collide with each other with appropriate energy and orientation as well.

The Collision Model

Furthermore, molecules must collide with the correct orientation and with enough energy to cause bond breakage and formation.

Activation Energy

- In other words, there is a minimum amount of energy required for reaction: the activation energy, *E^a* .
- Just as a ball cannot get over a hill if it does not roll up the hill with enough energy, a reaction cannot occur unless the molecules possess sufficient energy to get over the activation energy barrier.

Reaction Coordinate Diagrams

It is helpful to visualize energy changes throughout a process on a reaction coordinate diagram like this one for the rearrangement of methyl isonitrile.

Reaction Coordinate Diagrams

- It shows the energy of the reactants and products (and, therefore, ΔE).
- The high point on the diagram is the transition state.

- The species present at the transition state is called the activated complex.
- The energy gap between the reactants and the activated complex is the activation energy barrier.

Temperature is defined as a measure of the average kinetic energy of the molecules in a sample.

• At any temperature there is a wide distribution of kinetic energies.

- As the temperature increases, the curve flattens and broadens.
- Thus at higher temperatures, a larger population of molecules has higher energy.

• If the dotted line represents the activation energy, as the temperature increases, so does the fraction of molecules that can overcome the activation energy barrier.

• As a result, the reaction rate increases.

Kinetic energy

This fraction of molecules can be found through the expression:

$$
f=e^{-\frac{E_a}{RT}}
$$

where *R* is the gas constant and *T* is the temperature in Kelvin .

Kinetic energy

Arrhenius Equation

Svante Arrhenius developed a mathematical relationship between *k* and *E^a* :

$$
k=Ae^{-\frac{E_a}{RT}}
$$

where *A* is the frequency factor, a number that represents the likelihood that collisions would occur with the proper orientation for reaction.

Arrhenius Equation

When *k* is determined experimentally at several temperatures, E_a can be calculated from the slope of a plot of ln *k* vs. 1/*T*.

Outline: Kinetics

Reaction Mechanisms

The sequence of events that describes the actual process by which reactants become products is called the reaction mechanism.

- Reactions may occur all at once or through several discrete steps.
- Each of these processes is known as an elementary reaction or elementary process.

Reaction Mechanisms

- The molecularity of a process tells how many molecules are involved in the process.
- The rate law for an elementary step is written directly from that step.

Multistep Mechanisms

- In a multistep process, one of the steps will be slower than all others.
- The overall reaction cannot occur faster than this slowest, rate-determining step.

Slow Initial Step

 $NO_2(g) + CO(g)$ \implies $NO(g) + CO_2(g)$

• The rate law for this reaction is found experimentally to be

$$
Rate = k [NO2]2
$$

- CO is necessary for this reaction to occur, but the *rate* of the reaction does not depend on its concentration.
- This suggests the reaction occurs in two steps.

Slow Initial Step

• A proposed mechanism for this reaction is

- The $NO₃$ intermediate is consumed in the second step.
- As CO is not involved in the slow, rate-determining step, it does not appear in the rate law.

Fast Initial Step

$$
2\ NO(g)+Br_2(g)\to 2NOBr(g)
$$

• The rate law for this reaction is found (experimentally) to be

$$
rate = k \left[NO \right]^2 \left[Br_2 \right]
$$

• Because termolecular (= trimolecular) processes are rare, this rate law suggests a two-step mechanism.

Fast Initial Step

• A proposed mechanism is

$Step 1: NO + Br_2 \rightleftharpoons NOBr_2$ (fast) $Step 2: NOBr₂ + NO \rightarrow 2NOBr$ (slow)

Step 1 is an *equilibrium*it includes the forward *and* reverse reactions.

Fast Initial Step $Step 1: NO + Br_2 \rightleftharpoons NOBr_2$ (fast) $Step 2: NOBr₂ + NO \rightarrow 2NOBr$ (slow)

- The rate of the overall reaction depends upon the rate of the slow step.
- The rate law for that step would be

$$
rate_2 = k_2 \, [NOBr_2] \, [NO]
$$

• But how can we find $[NOBr_2]$?

Fast Initial Step
 $Step 1: NO + Br_2 \rightleftharpoons NOBr_2$ (fast)

• NOI $Step\ 2:\ NOBr_2+NO-$

– With NO to form NOBr

 $-$ By decomposition to reform NO and Br₂

- The reactants and products of the first step are in equilibrium with each other.
- Therefore,

$$
Rate_f = Rate_r
$$

Fast Initial Step $Step 1: NO + Br_2 \rightleftharpoons NOBr_2$ (fast) $Step 2: NOBr₂ + NO \rightarrow 2NOBr$ (slow)

• Because Rate_{*f*} = Rate_{*r*}, k_1 [NO] $[Br_2] = k_{-1}$ [NOBr₂]

Solving for [NOBr₂] gives us

$$
\frac{k_1}{k_{-1}}\text{[NO]} \text{[Br}_2\text{]} = \text{[NOBr}_2\text{]}
$$

Fast Initial Step

 $Step 1: NO + Br_2 \rightleftharpoons NOBr_2$ (fast) $Step 2: NOBr₂ + NO \rightarrow 2NOBr$ (slow) Substituting this expression for [NOBr₂] in the rate law for the rate-determining step gives

$$
rate = \frac{k_2 k_1}{k_{-1}} \left[NO \right] \left[Br_2 \right] \left[NO \right]
$$

$$
=\frac{k_2k_1}{k_{-1}}\left[NO\right]^2\left[Br_2\right]
$$

Catalysts

- Catalysts increase the rate of a reaction by decreasing the activation energy of the reaction.
- Catalysts change the mechanism by which the process occurs.

Catalysts

One way a catalyst can speed up a reaction is by holding the reactants together and helping bonds to break.

Enzymes

- Enzymes are catalysts in biological systems.
- The substrate fits into the active site of the enzyme much like a key fits into a lock.

Thank you for your time
and attention alla arrelirioli