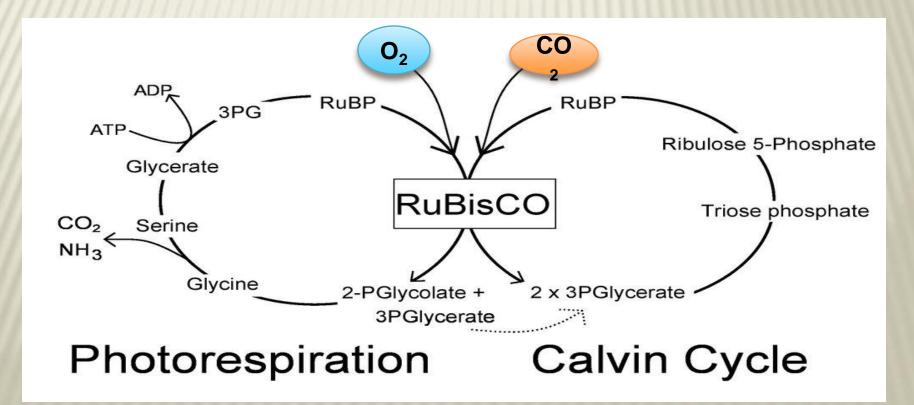


Bhagalpur National College, Bhagalpur

(A Constituent unit of Tilka Manjhi Bhagalpur University, Bhagalpur)

Photorespiration, C4 cycle, CAM cycle (B.Sc.-III)

PHOTORESPIRATION IN C3 AND C4 PLANTS

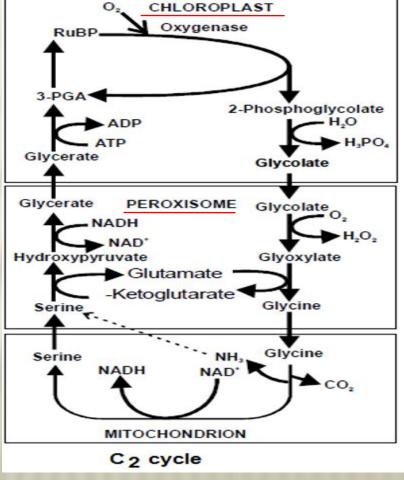


Dr. Amit Kishore Singh Department of Botany B.N. College, Bhagalpur

Photorespiration

• Photorespiration occurs when the CO_2 levels inside a leaf become low. This happens on hot dry days .

- On hot dry days the plant is forced to close its stomata to prevent excess water loss.
- The plant continues fix CO_2 when its stomata are closed, the CO_2 will get used up and the O2 ratio in the leaf will increase relative to CO_2 concentrations.
- When the CO_2 levels inside the leaf drop to around 50 ppm, Rubisco starts to combine O_2 with RuBP instead of CO_2 .



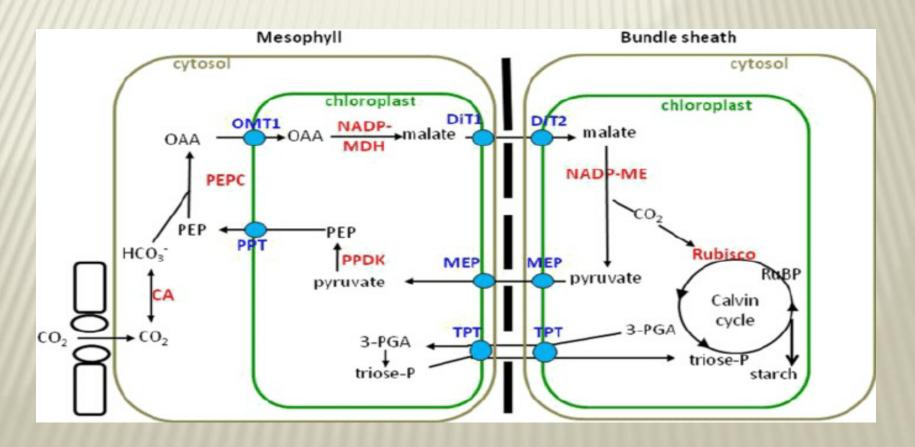
• The net result of this is that instead of producing 2 (3C) PGA molecules, <u>only one</u> <u>molecule of PGA</u> is produced and a toxic 2C molecule called <u>phosphoglycolate</u> is produced.

• The plant must get rid of the phosphoglycolate since it is highly toxic.

• It converts the molecule to glycolic acid which is transported to the peroxisome and there converted to glycine.

This glycine is further transported to mitochondria where it deaminated to produce <u>serine</u>.

• The serine is then used to make other organic molecules.


• All these conversions cost the plant energy and results in the net loss of CO2 from the plant.

• To prevent this process, two specialized biochemical additions have been evolved in the plant world: C_4 and CAM metabolism.

C₄ Pathway

• The C_4 pathway is designed to efficiently fix CO_2 at low concentrations and plants that use this pathway are known as C_4 plants.

• These plants fix CO_2 into a four carbon compound (C_4) called **oxaloacetate (OAA)**. This occurs in cells called mesophyll cells.

Overall C₄ Pathway

• CO₂ is fixed to a three-carbon compound called <u>phosphoenolpyruvate</u> (**PEP**) to produce the four-carbon compound **oxaloacetate** (OAA). This step occursin cells called **mesophyll** cells.

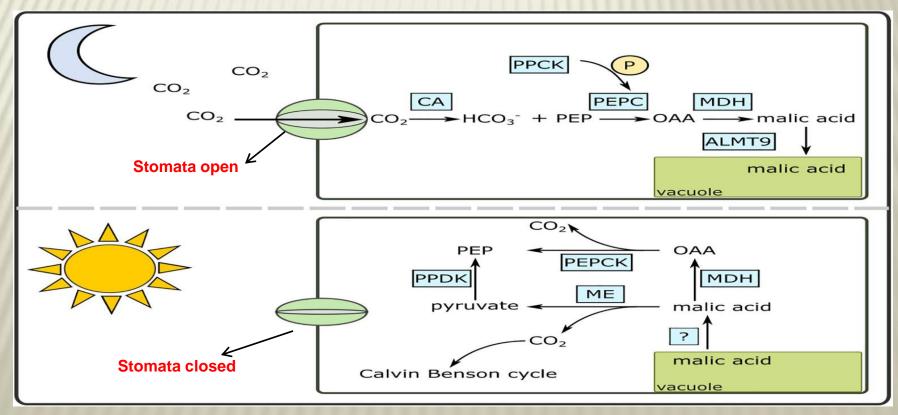
• The enzyme catalyzing this reaction, PEP carboxylase (**PEPC**), fixes CO_2 very efficiently so the C_4 plants don't need to have their stomata open as much.

• The oxaloacetate is then converted to another four-carbon compound called <u>malate</u> in a step requiring the reducing power of NADPH.

• The malate then exits the mesophyll cells and enters the chloroplasts of specialized cells called **bundle sheath cells**.

• Here the four-carbon malate is decarboxylated to produce CO₂, a three-carbon compound called **pyruvate**, and **NADPH**.

• The CO_2 combines with ribulose bisphosphate (**RuBP**) and goes through the Calvin cycle.

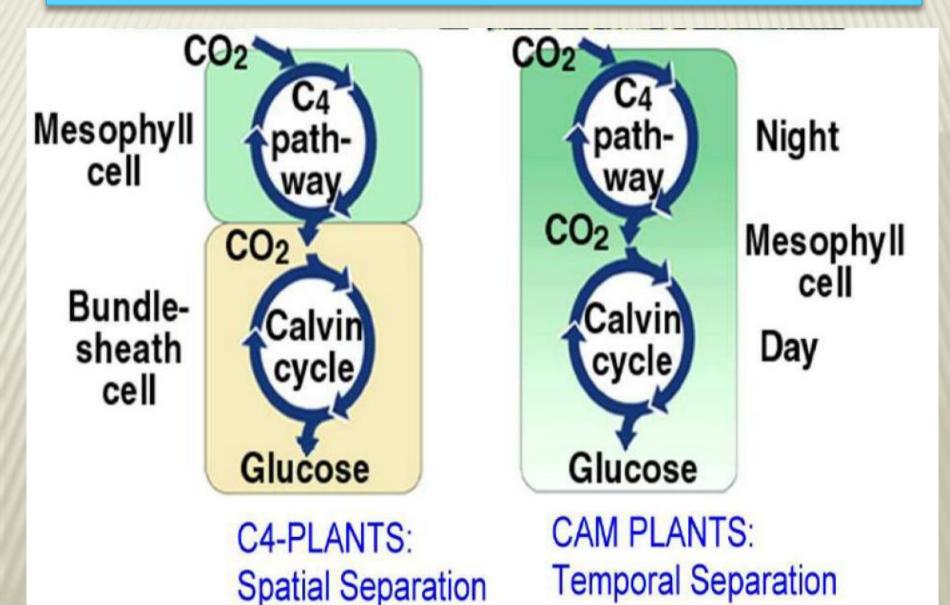

• The pyruvate re-enters the mesophyll cells, reacts with ATP, and is converted back to <u>phosphoenolpyruvate</u> (**PEP**), the starting compound of the C_4 cycle.

CAM Pathway

> CAM plants live in very dry condition and, unlike other plants, open their stomata to fix CO_2 only at night (<u>Acidification</u>).

 \succ Like C₄ plants, they use PEP carboxylase (**PEPC**) to fix CO₂, forming <u>oxaloacetate</u>.

> The oxaloacetate is converted to **malate** which is stored in cell vacuoles. During the day when the stomata are closed, CO_2 is removed from the stored malate and enters the Calvin cycle.


Differences between calvin (C3) and C4

C3

- Temp 15-25° C
- Absence of malate
- One carboxylation reaction
- CO2 is the substrate
- Usual leaf structures

- Temp 30-35° C
- Presence of malate
- 2 carboxylation reactions
- HCO3 is the substrate
- Closed stomata to reduce water loss and concentrating CO2 in the bundle sheet cells
- Additional ATP is required

Difference between C4 plants and CAM plants

Comparison between C3, C4, and CAM

	C3	C4	CAM
product	G3P	Malate	Malate
	Day &night	Day &night	Night only
Anatomy	No bundle	Bundle sheet	No bundle
	sheet cell	cell	sheet cell
No of stomata	2000- 31000	10000- 16000	100-800
Photorespirati	Up to 40%	Not	Not
on		detectable	detectable
Species	Wheat, rice, potato	Sugar cane	Pineapple, vanilla, cacti

Factors affecting photorespiration

O2: CO2 Ratio

- If cells have low O_2 but Higher CO_2 , normal photosynthesis i.e. Calvin Cycle dominates.
- C_4 plants have little photorespiration because they carry the CO_2 to the bundle sheath cells and can build up high CO_2 .
- Calvin Cycle reactions always favored over photorespiration.
- If cells have higher O₂ and lower CO₂, photorespiration dominates.

Temperature

Photorespiration increases with temperature.

THANK YOU