Assignment for B.Sc. Part I (Chem (H)

- 1. F or the radioactive isotope ¹³¹I, the time required for 50% disintegration is 8 days. The time required for the 99.9% disintegration of 5.5 g of ¹³¹I is (Up to one decimal place)
 a) 70 days
 b) 16 days
 c) 32 days
 d) 80 days
- 2. The rate constant of a first order reaction, 1.6×10^{-3} is s⁻¹ at 300 K. Given that the activation energy of the reaction is 28 kJ mol⁻¹ and assuming Arrhenius behavior for the temperature dependence, the total time required to obtain 90% of Y at 350 K is (in seconds) (Up to one decimal place. Use R = 8.31 J K⁻¹mol⁻¹)

- 3. The rate constant of a reaction is 1.25 × 10⁻⁴ molL⁻¹s⁻¹. If the initial concentration of reactant is 0.250 MolL⁻¹, the total time (in second) required for complete conversion isa) 2000 b) 1500 c) 200 d) 150
- 4. For the following consecutive first order reactions

$$X \xrightarrow{k_1 = 2.0 \text{ s}^{-1}} Y \xrightarrow{k_2 = 0.1 \text{ s}^{-1}} Z$$

the time (in seconds) required for Y to reach its maximum concentration (assuming only X is present at time = 0) is

- a) 1.50 b) 1.60 c) 1.70 d) 1.65
- 5. The concentration of a reactant R varies with time for two different reactions as shown in the following plots

The orders of these two reactions I and II, respectively, are

a) zero and one

6. For the following reactions

$$A \xrightarrow{k_1} 2B$$

$$B \xrightarrow{k_2} C$$

$$\frac{d[B]}{dt} \text{ is given by}$$
a) $k_1[A] - k_{-1}[B]^2 - 2k_2[B]$
b) $2k_1[A] - 2k_{-1}[B]^2 - k_2[B]$
c) $\frac{1}{2}k_1[A] - \frac{1}{2}k_{-1}[B]^2 - k_2[B]$
d) $2k_1[A] - 2k_{-1}[B]^{1/2} - k_2[B]$

 The expression for the equilibrium constant (K_{eq}) for the enzyme catalyzed reaction given below, is

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_3} P + E$$
(a) $\frac{k_1k_3}{k_2k_4}$ (b) $\frac{k_1k_2}{k_3k_4}$ (c) $\frac{k_2k_3}{k_1k_4}$ (d) $\frac{k_1k_4}{k_2k_3}$

8. For a reaction type

$$X \xrightarrow{k_1} Y$$

The correct rate expression is $([X]_0 \text{ and } [X] \text{ correspond to the concentrations of X at time } t = 0 and t = t, respectively)$

a)
$$-\frac{d[X]}{dt} = k_1[X]_0 - (k_1 + k_2) [X]$$

b) $-\frac{d[X]}{dt} = (k_1 + k_2) [X] - k_2[X]_0$
c) $-\frac{d[X]}{dt} = (k_1 + k_2) [X]_0 - k_1[X]$
d) $-\frac{d[X]}{dt} = (k_1 - k_2) [X] - k_1[X]_0$

9. For a reaction involving two steps given below

$$G \xrightarrow{k_1} 2H$$

$$G + H \rightarrow P$$

Assume that the first step attains equilibrium rapidly. The rate of formation of P is proportional to

- a) $[G]^{1/2}$ b) [G] c) $[G]^2$ d) $[G]^{3/2}$
- 10. The specific rate constant of decomposition of a compound is represented by

$$lnK = 5.0 - \frac{12000}{T}$$

The activation energy of decomposition for this compound at 300K is:

- (a) kcal/mole b) 12 kcal/mole c) 24 cal/mole d) 12 cal/mole
- 11. The half-life for the hydrolysis of an ester varies with the initial concentration of the reactant [E₀] as follows:

$[E_0]/10^{-2} molL^{-1}$	5.0	4.0	3.0
Half-life	240	300	400

Th	e order of the rea	action is		
a)	0	b) 1	c) 2	d) 3

12. For the first order consecutive $P \rightarrow Q \rightarrow R$, under steady state approximation to [Q], the variation of [P], [Q] and [R] with time are best represented by

13. In the reaction mechanism given

$$X + Y \xrightarrow[k_2, E_{A,2}]{k_1, E_{A,3}} Z \xrightarrow{k_3, E_{A,3}} P$$

where, k's represent rate constants, E_A 's represent activation energies and $k_2 >> k_3$

The overall rate constant for the formation of P can be expressed as

a) k_1k_3/k_2 b) k_1 c) $k_1/(k_2+k_3)$ d) $k_1/(k_2-k_3)$

14. The overall activation energy for the formation of P can be expressed as

(a)
$$\frac{E_{A,1}E_{A,3}}{E_{A,2}}$$
 (b) $E_{A,1}$ (c) $E_{A,1} + E_{A,3} - E_{A,2}$ (d) $\frac{E_{A,1}}{E_{A,2} + E_{A,3}}$

15. For the reaction given below, the relaxation time is 10^{-6} s. Given that 10% of A remains at equilibrium, the value of $k_1 (s^{-1})$ is-

A
$$\xrightarrow{k_1}$$
 B
(a) 9×10^5 (b) 10^{-5} (c) 10^5 (d) 9×10^{-5}

16. The mechanism of enzyme (E) catalyzed reaction of substrate (S) to yield product P is:

$$E + S \xrightarrow{k_1}_{k_{-1}} [ES] \xrightarrow{k_2}_{k_{-2}} E + P; \qquad \frac{-d[S]}{dt} = \frac{k_1 k_2 [S]_0 + k_2 k_{-2} [P]}{k_1 [S]_0 + k_{-2} [P] + k_{-1} + k_2} [E]_0$$

If a small amount of S is converted to P, the maximum rate for the reaction will be observed for
(a) $(k_1 + k_2) >> k_1 [S]_0$ (b) $(k_{-1} + k_2) << k_1 [S]_0$
(c) $(k_1 + k_2) >> k_1 (s)_1$ (d) $k_2 << k_1$

17. The reaction $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$, Proceed via the following mechanism

$$\begin{array}{ccc} \mathrm{NO} + \mathrm{NO} & & \underbrace{\mathbf{k}_{a}} & \mathrm{N}_{2}\mathrm{O}_{2} \\ \mathrm{N}_{2}\mathrm{O}_{2} & & \underbrace{\mathbf{k}_{a'}} & \mathrm{NO} + \mathrm{NO} \\ \mathrm{N}_{2}\mathrm{O}_{2} + \mathrm{O}_{2} & & \underbrace{\mathbf{k}_{b}} & \mathrm{NO}_{2} + \mathrm{NO}_{2} \end{array}$$

The rate of this reaction is equal to

- (a) $2k_b [NO][O_2]$ (b) $(2k_a k_b [NO]^2[O_2]) / (k_a + k_b [O_2])$ (c) $2k_b [NO]^2[O_2]$ (d) $k_a [NO]^2[O_2]$
- 18. The rate constants of two reactions at temperature T are k_1 (T) and k_2 (T) and the corresponding activation energies are E_1 and E_2 with $E_2 > E_1$. When temperature is raised from T_1 and T_2 , which one of the following relations is correct?

(a)
$$\frac{k_{1}(T_{2})}{k_{1}(T_{1})} = \frac{k_{2}(T_{2})}{k_{2}(T_{1})}$$
 (b)
$$\frac{k_{1}(T_{2})}{k_{1}(T_{1})} > \frac{k_{2}(T_{2})}{k_{2}(T_{1})}$$
 (c)
$$\frac{k_{1}(T_{2})}{k_{1}(T_{1})} \ge \frac{k_{2}(T_{2})}{k_{2}(T_{1})}$$
 (d)
$$\frac{k_{1}(T_{2})}{k_{1}(T_{1})} < \frac{k_{2}(T_{2})}{k_{2}(T_{1})}$$

19. Consider an exothermic reaction

A
$$\underset{\underline{k_{1}}}{\underbrace{k_{1}}}$$
 I

As the temperature increases

- (a) k_1, k_{-1} , and k_1/k_{-1} increases(b) k_1 increases, k_{-1} decreases, and k_1/k_{-1} increases.(c) k_1, k_{-1} increases and k_1/k_{-1} decreases(d) k_1 and k_{-1} decrease, and k_1/k_{-1} increases.
- 20. The rate constant for a unimolecular reaction was $2.66 \times 10^{-3} \text{s}^{-1}$ and $2.2 \times 10^{-1} \text{s}^{-1}$ at T=120 K and at T=360 K respectively. The rate constant (in s⁻¹) at 240 K would be

a)
$$2.4 \times 10^{-2} \text{s}^{-1}$$
 b) $2.4 \times 10^{-1} \text{s}^{-1}$ c) $4.8 \times 10^{-2} \text{s}^{-1}$ d) $1.8 \times 10^{-3} \text{s}^{-1}$

21. The decomposition of gaseous acetaldehyde at T(K) follow the second order kinetics. The half-life of this reaction is 400 s when the initial pressure is 250 Torr. What will be the rate constant (in Torr⁻¹s⁻¹) and half-life (in s) respectively, if the pressure of the acetaldehyde is 200 Torr at the same temperature?

a)
$$10^5$$
 and 500 b) 10^{-5} and 400 c) 10^{-4} and 400 d) 10^{-5} and 500

- 22. For a reaction, the rate constant k at 27° C was found to be $k = 5.4 \times 10^{-11} e^{-50}$. The activation energy of the reaction is
 - a) 50 Jmol^{-1} b) 415 Jmol^{-1} c) 15000 Jmol^{-1} d) 125,000 Jmol^{-1}
- 23. The concentrations of a species A undergoing the reaction A → P is 1.0, 0.5, 0.33, 0.25 moldm⁻³ at t = 0, 1, 2, 3 seconds respectively. The order of the reaction is:
 a. a) two
 b) one
 c) zero
 d) three
- 24. The rate equation for the reaction $2AB + B_2 \rightarrow 2AB_2$ is given by rate = k[AB][B₂], a possible mechanism consistent with this rate law is

(a) $2AB + B_2 \xrightarrow{\text{slow}} 2AB_2$	(b) $AB + AB = A_2B_2(fast)$ $A_2B_2 + B_2 = slow \rightarrow 2AB_2$
$AB + B_2 \xrightarrow{\text{slow}} AB_3$ (c) $AB + AB \xrightarrow{\text{fast}} 2AB$	$AB + B_2 \Longrightarrow AB_3 (fast)$ (d) $AB + AB \xrightarrow{slow} 2AB$
$11D_3 + 11D$ $7211D_2$	$AD_3 + AD \longrightarrow 2AD_2$

25. According to Arrhenius equation (k = rate constant and T = temperature)
a) lnk decreases linearly with 1/T
b) lnk decreases linearly with T
c) lnk increases linearly with 1/T
d) lnk increases linearly with T

- 26. In the mechanism of the reaction, H₂ + Br₂ → 2HBr, the first step is
 a) dissociation of H₂ into H[•] radicals
 b) dissociation of Br₂ into Br[•] radicals
 c) reaction of H[•] radical with Br₂
 d) reaction of Br[•] radical with H₂
- 27. In the reaction between NO and H₂the following data are obtained

Experiment I: $P_{H_2} = constant$

P_{NO} (mm of Hg)	359	300	152
$\frac{-dP_{NO}}{dt}$	1.50	1.03	0.25

Experiment II : $P_{NO} = constant$

$P_{H_2}(mm \text{ of } Hg)$	289	205	147
$\frac{-dP_{\rm H_2}}{dt}$	1.60	1.10	0.79

- 28. The order with respect to H_2 and NO, respectively are
 - 2 and 1 b) 1 and 2

c) 3 and 1

d) 2 and 2

29. For the following sequence of reactions

$$2A \xleftarrow[k_{2}]{} 4B + 3C; \ 2B \xrightarrow[k_{3}]{} P$$
The $\frac{d[B]}{dt}$ is given by

(a) $\frac{1}{4}k_{1}[A]^{2} - \frac{1}{4}k_{2}[B]^{4}[C]^{3} - \frac{1}{2}k_{3}[B]^{2}$
(b) $\frac{1}{2}k_{1}[A]^{2} - \frac{1}{2}k_{2}[B]^{4}[C]^{3} - k_{3}[B]^{2}$
(c) $2k_{1}[A]^{2} - 2k_{2}[B]^{4}[C]^{3} - k_{3}[B]^{2}$
(d) $4k_{1}[A]^{2} - 4k_{2}[B]^{4}[C]^{3} - 2k_{3}[B]^{2}$

30. Consider the reactions,

- a. $A + B \rightarrow \text{product....(1)}$
- b. $C + D \rightarrow product....(2)$

Species	M (g/mole)	Diameter	
		(nm)	
А	2	1	
В	4	2	
С	6	3	
D	4	4	2

The ratio of squares of pre-exponential factor of reaction (1) and reaction (2) is-

a) 1/2 b) 3/4 c) 1/4 d)	2/3
-------------------------	-----

31. A second order reaction is 50 % completed in 5 mins, the time required for 75 % completion of the reaction is

a) 20 min	b) 25 min	c) 15 min	d) 18 min
-----------	-----------	-----------	-----------

32. For a given first order reaction, the reactant reduces to 1/4th its initial value in 10 minutes. The rate constant of the reaction is:
a) 0.1386 min⁻¹
b) 0.0693 min⁻¹
c) 0.1386 molL⁻¹min⁻¹
d) 0.0693 molL⁻¹min⁻¹

33. The temperature dependence of a reaction is given by $k = AT^{5/2} \exp(-E_0/RT)$, the activation energy of the reaction given by

- a) $E_0 + 5 RT/2$ b) $E_0 + 2RT/5$ c) $E_0 + 2RT$ d) $E_0 + 5RT$
- 34. For a complex reaction $A \rightarrow P$, $Ea_1 = 180 \text{ kJ/mol}$; $Ea_2 = 0 \text{ kJ/mol}$; $Ea_3 = 50 \text{ kJ/mol}$; overall constant k is related to individual rate constant by the equation

$$k = \left(\frac{k_1 \cdot k_2}{k_3}\right)^{2/3}$$

Activation energy (kJ/mol) for the overall reaction is:

a) 100 b) 43.44 c) 150 d) 140

35. A first order reaction is 50% completed in 20 minutes at 27°C and in 5 minutes at 47°C. The energy of activation of the reaction is: d) 6.65kJ/mol

a) 43.85kJ/mol b) 55.14kJ/mol c) 11.97kJ/mol